Implementation of Support Vector Machine and Multilayer Perceptron Algorithms for Patient Diagnosis Based on Patient Profile and Complaints at Jatibening Public Health Center

Main Article Content

Romanda Ilham
Afri Yudha

Abstract

Community health centers (Puskesmas) are primary healthcare institutions that play a crucial role in providing services to the community, especially in areas with limited access. However, the disease identification process at the Jatibening Community Health Center still uses traditional methods that are time-consuming and potentially biased. This study aims to create a disease prediction system for patients using the Support Vector Machine (SVM) and Multilayer Perceptron (MLP) machine learning algorithms that utilize data from patient profiles and complaints. The methods used in this study include collecting information from patient medical records, data processing, training SVM and MLP models, and assessing the model's accuracy level. Test results show that the MLP algorithm achieves 100% accuracy, while the SVM also demonstrates 100% accuracy in predicting the likelihood of a patient's disease based on factors such as age, gender, and chief complaint. Thus, the use of machine learning algorithms on patient data at the Jatibening Community Health Center can accelerate the initial diagnosis process and support more efficient medical decision-making

Article Details

How to Cite
Ilham, R., & Yudha, A. (2025). Implementation of Support Vector Machine and Multilayer Perceptron Algorithms for Patient Diagnosis Based on Patient Profile and Complaints at Jatibening Public Health Center. Journal Technology Information and Data Analytic, 2(2), 104–108. https://doi.org/10.70491/tifda.v2i2.104
Section
Articles

References

S. Wahyuni and L. Ferial, “Pemeriksaan Puskesmas di Daerah Terpencil terhadap Fasilitas Kesehatan,” JOURNAL OF BAJA HEALTH SCIENCE, vol. 3, no. 01, 2023, doi: 10.47080/joubahs.v3i01.2487.

A. R. Luthfia and E. N. S. Alkhajar, “PRAKTIK PELAYANAN PUBLIK: PUSKESMAS SEBAGAI GARDA TERDEPAN PELAYANAN KESEHATAN,” Decision: Jurnal Administrasi Publik, vol. 1, no. 2, 2019, doi: 10.23969/decision.v1i2.1802.

Amirotul Luthfiyah and Imelda Dian Rahmawati, “Analisis Kualitas Pelayanan Kesehatan di Puskesmas Porong Kabupaten Sidoarjo,” Jembatan Hukum : Kajian ilmu Hukum, Sosial dan Administrasi Negara, vol. 1, no. 3, pp. 212–220, Jul. 2024, doi: 10.62383/jembatan.v1i3.533.

R. Gustriansyah, S. Puspasari, A. Sanmorino, N. Suhandi, and F. Antony, “Penerapan Aplikasi Laboratorium Untuk Meningkatkan Kualitas Layanan Di Puskesmas Gandus,” Jurdimas (Jurnal Pengabdian Kepada Masyarakat) Royal, vol. 6, no. 3, 2023, doi: 10.33330/jurdimas.v6i3.2425.

K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis, “Machine learning applications in cancer prognosis and prediction,” 2015. doi: 10.1016/j.csbj.2014.11.005.

M. Z. Nurrokhman, “Perbandingan Algoritma Support Vector Machine dan Neural Network untuk Klasifikasi Penyakit Hati,” The Indonesian Journal of Computer Science, vol. 12, no. 4, 2023, doi: 10.33022/ijcs.v12i4.3274.

N. Sharma and H. Om, “Using MLP and SVM for predicting survival rate of oral cancer patients,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 3, no. 1, 2014, doi: 10.1007/s13721-014-0058-x.

S. Tufail, H. Riggs, M. Tariq, and A. I. Sarwat, “Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms,” 2023. doi: 10.3390/electronics12081789.

P. Cortez, “Data Mining with Multilayer Perceptrons and Support Vector Machines,” Intelligent Systems Reference Library, vol. 24, 2012, doi: 10.1007/978-3-642-23242-8_2.

N. Uma, “A Hybrid Approach for Medical Image Classification using Support Vector Machines and Artificial Neural Networks,” in Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, 2023. doi: 10.1109/ICOSEC58147.2023.10276063.