Decision Tree Regression Approach to Modeling Dengue, Tuberculosis, and Diarrhea Case Numbers
Main Article Content
Abstract
The increasing incidence of Dengue Hemorrhagic Fever (DHF), Tuberculosis (TB), and Diarrhea in a district area highlights the urgent need for a data-driven prediction system to support public health policy. This study develops a predictive model of case numbers at the sub-district level using the Decision Tree Regression algorithm within the CRISP-DM methodology. Secondary data from 2020-2023 were utilized, including disease case records (Health Office), demographic data (BPS), and environmental data (BMKG). The system was implemented as a web-based application built with PHP and Python/Flask, enabling dataset management, model retraining, and interactive visualization of predictions, complemented by risk classification and recommended interventions. Experimental results demonstrate high predictive accuracy, with R² values of 0.9130 for TB, 0.8805 for DHF, and 0.8228 for Diarrhea. Overall, the proposed system serves as an objective and measurable decision-support tool, assisting the District Health Office in formulating preventive policies more rapidly and effectively.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” Journal of Information System Management (JOISM), vol. 5, no. 1, 2023. USA: Abbrev. of Publisher, year, ch. x, sec. x, pp. xxx–xxx.
Kusumastuti, E. Anggita, M. H. Purnomo, and E. M. Yurniano, “Prediksi Penyebaran Kasus Demam Berdarah DKI Jakarta,” Jurnal Teknik Institut Teknologi Sepuluh Nopember (ITS), vol. 12, no. 3, 2023.
I. S. I. Putri, R. S. Pradini, and M. Anshori, “Decision Tree Regression Untuk Prediksi Prevalensi Stunting di Provinsi Nusa Tenggara Timur,” Jurnal Teknologi Informatika dan Komputer, vol. 10, no. 2, pp. 413–427, Sep. 2024, doi: 10.37012/jtik.v10i2.2179.
A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, 2019.
Y.-T. Tsan et al., “The Prediction of Influenza-like Illness and Respiratory Disease Using LSTM and ARIMA,” Journal of Environmental Research and Public Health, vol. 19, p. 1858, 2022, doi: 10.3390/ijerph.
X. Zhang et al., “Predicting influenza-like illness trends based on sentinel surveillance data in China from 2011 to 2019: A modelling and comparative study,” Infect Dis Model, vol. 9, no. 3, pp. 816–827, Sep. 2024, doi: 10.1016/j.idm.2024.04.010.
R. Rofiani, L. Oktaviani, D. Vernanda, and T. Hendriawan, “Penerapan Metode Klasifikasi Decision Tree dalam Prediksi Kanker Paru-Paru Menggunakan Algoritma C4.5,” Jurnal Tekno Kompak, vol. 18, no. 1, 2024.
B. Khusnul Khotimah and M. S. Rochman, “Model Peramalan Jumlah Penyakit Demam Berdarah Dengan Pendekatan Metode Fuzzy Linear REGRESSION (FLR),” Jurnal Ilmiah NERO, vol. 6, no. 1, p. 2021, 2021.
D. Wira, T. Putra, and R. Andriani, “Unified Modelling Language (UML) dalam Perancangan Sistem Informasi Permohonan Pembayaran Restitusi SPPD,” Jurnal TEKNOIF Teknik Informatika Institut Teknologi Padang, vol. 7, no. 1, 2019.
A. Hendini, “Pemodelan Uml Sistem Informasi Monitoring Penjualan Dan Stok Barang (Studi Kasus: Distro Zhezha Pontianak),” Jurnal Khatulistiwa Informatika, vol. IV, 2020.
Hindrayani, K.M., Fahrudin, T.M., Aji, R.P. and Safitri, E.M., 2020, December. Indonesian stock price prediction including covid19 era using decision tree regression. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 344-347). IEEE.
Sishi, M. and Telukdarie, A., 2021, April. The application of decision tree regression to optimize business processes. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 48-57).
Putri, I.S.I., Pradini, R.S. and Anshori, M., 2024. Decision Tree Regression untuk Prediksi Prevalensi Stunting di Provinsi Nusa Tenggara Timur. Jurnal Teknologi Informatika dan Komputer, 10(2), pp.413-427.
Ihfandi, A., 2018. Implementasi Data Mining Untuk Prediksi Daerah Rawan Penyakit Demam Berdarah Menggunakan Algoritma C4. 5 (Studi Kasus: Dinas Kesehatan Kabupaten Tangerang) (Doctoral Dissertation, Universitas Satya Negara Indonesia).
Fahri, A. and Ramdhani, Y., 2022. Visualisasi Data dan Penerapan Machine Learning Menggunakan Decision Tree Untuk Keputusan Layanan Kesehatan COVID-19. J. Tekno Kompak, 17(2), pp.50-60.