Design of Attendance and Room Monitoring Application with Face Recognition using Convolutional Neural Network method
Main Article Content
Abstract
The development of technology in the field of facial recognition provides a great opportunity to improve efficiency and security in various aspects, one of which is the attendance and room surveillance system. This study aims to design an attendance and room surveillance application based on facial recognition using the Convolutional Neural Network (CNN) method in a private company engaged in the property sector. This application is designed to simplify the employee attendance process and improve room surveillance by automatically recognizing employee faces, thereby reducing the risk of attendance fraud and ensuring more accurate attendance. The CNN method was chosen because of its ability to process images and recognize facial patterns with high accuracy. This system consists of several main features, namely employee face registration, automatic face-based attendance, and monitoring employee presence in the office space. The test results show that this application is able to identify faces with a good level of accuracy, as well as provide convenience and comfort for users.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
S. Sugeng dan A. Mulyana, “Sistem Absensi Menggunakan Pengenalan Wajah (Face Recognition) Berbasis Web LAN,” Jurnal Sisfokom (Sistem Informasi dan Komputer), 2022, doi: 10.32736/sisfokom.v11i1.1371.
A. Zein, “Sistem Absensi Cerdas Menggunakan Open CV Berbasis Pengenalan Wajah,” SAINSTECH: JURNAL PENELITIAN DAN PENGKAJIAN SAINS DAN TEKNOLOGI, 2023, doi: 10.37277/stch.v33i3.1733.
N. Dewi dan F. Ismawan, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CNN UNTUK SISTEM PENGENALAN WAJAH,” Faktor Exacta, 2021, doi: 10.30998/faktorexacta.v14i1.8989.
T. Susim dan C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” Jurnal Syntax Admiration, 2021, doi: 10.46799/jsa.v2i3.202.
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, dan Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 2021, doi: 10.22146/jnteti.v10i2.1417.
M. Sholawati, K. Auliasari, dan FX. Ariwibisono, “PENGEMBANGAN APLIKASI PENGENALAN BAHASA ISYARAT ABJAD SIBI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” JATI (Jurnal Mahasiswa Teknik Informatika), 2022, doi: 10.36040/jati.v6i1.4507.
L. Alzubaidi dkk., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, 2021, doi: 10.1186/s40537-021-00444-8.
S. Zhang, Y. H. Gong, dan J. J. Wang, “The Development of Deep Convolution Neural Network and Its Applications on Computer Vision,” Jisuanji Xuebao/Chinese Journal of Computers, vol. 42, no. 3, 2019, doi: 10.11897/SP.J.1016.2019.00453.
Budiman, A. et al. (2022) ‘Student attendance with face recognition (LBPH or CNN): Systematic literature review’, Procedia Computer Science, 216, pp. 31–38. doi: 10.1016/j.procs.2022.12.108.
Ben Fredj, H., Bouguezzi, S. and Souani, C. (2021) ‘Face recognition in unconstrained environment with CNN’, Visual Computer, 37(2), pp. 217–226. doi: 10.1007/s00371-020-01794-9.